首页 > 心得体会

高一数学学习心得多篇

时间:2025-07-24 07:11:31
高一数学学习心得多篇(全文共14561字)

【说明】高一数学学习心得多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。

高一数学学习心得篇1

高一时,每天一节新课,普通班一个学期要学两本书,实验班甚至更快。鉴于高一数学是整个高中的基础,我建议新高一的学生要做到以下几点:

1.注重预习

预习下一天的课程会让你在新课时胸有成竹,老师讲起来你会更易理解,对于预习中不懂的问题,更要认真听讲。

2.认真记课堂笔记

因为初中数学的难度相对较低,许多同学不记笔记也可能考一个不错的分数,但到了高中就不同了。我在这里介绍一个学习很好的同学的笔记方法:每一门课都要备一本笔记本(可以挑一本漂亮点的笔记本记数学笔记,以便增加数学学习的兴趣),每一页都用线划分成两部分,三七开即可,左边用来记上课的笔记,右边写上学习心得,预复习情况,不懂的问题等等。这样笔记本价值很高,便于高三复习。

3.独立完成作业

有些同学可能会偷懒,直接表现就是抄作业。我可以负责任地告诉大家,抄作业和自己做作业的区别,刚开始可能看似考试成绩差距不大,但到高二高三时效果就出来了,抄作业的同学考试分数可能会是独立完成同学的零头,这一点毫不夸张,刚步入高一的同学可以向你身边的“过来人”打听一下。

4.理性选择参考书

高中数学光看书是不行的,参考书是学习数学的助手,也是检验学习效果的好工具。对于那些数学基础肯好的同学,建议买一些提升空间大的参考书,对于初中数学成绩一般或者不理想的同学,建议你买一些基础性比较强的参考书。一句话:适合自己的参考书才是最好的。

5.做好错题记录

对于高中生而言,数学错题本的作用是很大的,最大的作用是便于高三的复习,当然,经常翻看错题本上面的习题,也有助于数学思维的训练。错题本在于慢慢积累,可以将平时测验中的做错的题记录在案,期中、期末测验中发现的问题自然更不能轻易放过。记录的时候不能只记录做错的题,更重要的是记录为什么自己会犯错,找出自己做题的思路问题。

另外,与数学老师、同学建立良好的人际关系也是非常重要的。在老师眼中学生是平等的,所以有不懂的就问。不懂并不可怕,可怕的是不懂也不问。你有什么学习心得体会也可以和老师沟通,当然,也可以和同学沟通交流。一个老师面对的是多个同学,老师的时间有限,在老师繁忙的情况下,可以多和数学好的同学多交流,这些都有助于你提高数学成绩,并且可以提供学好数学的信心。

对于那些志存高远的同学而言,高中数学学习可谓任重而道远,祝你能够顺利度过高中的起始阶段。

高一数学学习心得篇2

度过了貌似很轻松愉快的高一生活,我们昂首阔步来到了高二,对于数学一科,相当多的同学觉得高一阶段的知识非常可怕,不夸张的说高一阶段的知识比整个初中的知识问题还要多。如今到了高二,是不是知识更多更难了呢?

个人认为并不是这样的,高一阶段的知识强调的是理解,而高二阶段强调的是功力和技巧。差别莘不在于难度,而在于学习的侧重点,可以说高二的很多知识是对高一知识的深化和拓展。举个例子,高一阶段我们学习了函数的相关性质,其中很重要的一条是单调性。高一我们对这个知识点的要求是会用“比较法”判断单调性,还要通过对图像的分析来对函数单调性有直观的感受。这些都昌对函数单调性的理解。到了高二阶段,文科和理科学生都要学习一样新的工具——导数,也就是我们庆不做函数图像,也不用“取点比较”的情况下直接判断函数的单调性和单调区间。而这种处理单调性问题的新方法需要的就是熟练掌握技巧和扎实的基本功。

还有几何方面,高一阶段我们大多数同学学过了直线和圆,这是解析几何的初步,相信很多同学对于解析几何复杂的运算至今还“意犹未尽”。那么到了高二阶段,我们将要学习更加复杂的三类曲线——椭圆、双曲线、抛物线。运算上难度大大增加,图形的复杂度也大大增加,但是就本质来说,考察的核心还是“在图形中寻找线索,在计算中得到结果”的解题思路。另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。

最后在一些小知识上也有所深化,还记得当初在学习概率的时候,我们实际没有学习任何的计算方法,当时我们算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就不得不把大量的时间浪费在数数上,在高二我们就会学到高手是怎样数数的,也就是所谓的计数原理,到时候同学业们就会知道“乘法”比“加法”究竟能快多少。也能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。

总体来说,高二数学的难度比高一要大,但是如果同学们在高一的时候对知识有深入的理解的话,高二阶段的知识也就只是个深化练习的过程了,这就要求同学们在高二的时候造成不要放松,这个时期是最需要大量做题,大量练习的时期,错过了这个时期就再也没有机会超越别人了。有人会想高三再努力也不迟,殊不知高三的时候所有好好学习的人都会拼命的做题,拼命地练习,在那时想赶超别人几乎是不可能完成的任务。高三环境是不努力的人必然跌入谷底。努力的人也只可以保证不下降。也就是说想超过别人,走在别人前面,高二已经是最后的机会了。

对于高一阶段知识掌握的不够扎实的同学,高二也是唯一可能提高的机会了,正像上文所说,高二的知识很多是高一知识的扩展和深化,也就是说如果之前学习的时候没有掌握好,那么高二的学习就既是学习过程又是复习过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。比如说如果有同学函数没有学好,没关系,高二学习导数的时候会再回来研究函数问题:平面向量没学好,没关系,学习空间向量的进修也可以顺带复习;直线和圆没学好,没关系,圆锥曲线比圆难多了,学好圆锥曲线之后再回去看圆就轻松多了。

总之,在数学学科,如果你想超越别人,高二是最好的机会,如果你想追上别人,高二是最后的机会。我们将迎来高中整个三年中最困难,最有挑战,也是收益最大的一年。高考中数学的重要性无庸赘述,希望同学们能在高二的时候抓住机会,为了能有一个轻松的高三,也为了能有一个满意的高考而努力。

重点中学学生学习方法宝典

在过程中,掌握科学的,是提高成绩的重要条件。以下我分别从、上课、作业、、、课外学习、实验课等七个方面,谈一下的常规问题。应当说明的是,我这里所谈的是各科学习的一般规律,不涉及具体学科。

一、预习。预习一般是指在讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以,预习就是自学。预习要做到下列四点:

1、通览教材,初步理解教材的基本内容和思路。

2、预习时如发现与新课相联系的旧掌握 ……此处隐藏10261个字……字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

高一数学学习心得篇5

学好数学四步曲:方法,思路,准确率及速度。

第一步,方法。

解任何一道数学题,都有各种各样的方法,只不过是繁与简,通法与特法之分。这些解法都是解题者灵活而成功地运用数学基本解题方法的结果。接下来介绍几种基本解题方法:

1、探索法:例如本次月考中22题b=-a/(2a^2+1)=-1/(2a+1/a)的转化,集合问题优先讨论空集,存在性问题转化作最值问题等都用了探索法。注意从熟悉、特殊、改变问题表述等方面思考,把陌生化为熟悉。

2、数形结合法:包括三个方面:以形助数、以数助形、数形互助。

3、设想法:比如逆推,或者根据问题的特殊性、存在性作出某种设想,再尝试去推导。

4、其它:反证法、配方法、换元法、待定系数法、待定常数法等。

这些方法我们再熟悉不过了,只不过我们可能仅局限于在某种题型中使用。当题型改变,思维受干扰,就可能漏掉某些方法,也就是说,仅凭记忆做题。

第二步,思路。

解决较难的数学问题,思路要开阔,灵敏。如果思路狭窄,只想到用某一方面的知识或用某种方法解决,视野仅限于一隅、无形中给自己“画地为牢”。这样,在求解过程中要么举步维艰,要么步骤繁琐如入山水重复之境。而更多的思路,来自平时的听课与做题的日积月累。应当记忆一些题目的思路,记忆帮助理解,才能更好地运用。另外,做题时,不要仅局限于一个思路,尝试思考:是否有其他解法,如果题目稍作改变应该怎么做。思路也许就在不知不觉中扩宽了。

第三步,准确率。

个人保证准确率的方法:做一题检验一题,计算题算两到三次,尤其是第一次计算要稳,如遇方程,解出后再代回去检验,还有可以根据多种思路去验算一个结果。

第四步,速度。

做题速度一般要依赖于记忆,而记忆要靠理解。有了先前思路的铺垫,再加上对题型的熟悉,速度自然而然就提升了。切忌精神紧张,放松才能保证准确率和速度。

自从我初二开始自学一些奥数,数学就经常能考好。尽管竞赛题型和常规考试题型方向不同,但是知识总是相通的。所以,了解一些课外的数学知识并非无用。不仅能在艰难探索中发现新的思路,还能在艰苦钻研中感受数学之美。

高一数学学习心得篇6

一、为什么要做数学笔记?

(一)、从感知规律来说,做笔记可以加强记忆。

课堂上学到东西很容易忘掉,因为课堂的记忆只是短暂的,记得快忘的也快,如果笔记上不留些痕迹,哪里去找记忆的空缺。

厩笔记可以看成是学习成绩提高的重要途径。虽然有些同学没怎么记笔记也取得了较好的成绩,但是笔记在平日积累、期末复习中起的作用是不可小看的,这一点不可否认。

(二)、做笔记可以促使听课更加专心。

对学习困难的学生来来说,一定要记笔记。除了极个别的学生,许多学生都有上课时听得很懂,似乎理解了课堂上老师讲的内容,但下课后不会做题,也不知老师上课时对这些内容是怎么讲的、思维方法和解题步骤是什么。

有些学生,资质属于郭靖那一类,那么他就必须记笔记,反复钻研,虽然不能自创,但至少可以精通老师所教,如果老师教的得法,那么这种学生也可以成材,甚至是大材,至少应付高考得个中等成绩不成问题。

对于自制力不是很强的同学来说,做笔记可以促使上课不睡觉。现在学生听课容易走神,如果让学生养成做笔记的习惯,就不太容易走神了。有效地记笔记不仅可以积攒学习资料,而且可以帮助学生集中精力听课,预防开小差。

(三)笔记在学生构建知识发挥了重要作用

笔记是学生认知地图。思维必须拥有一认知地图以此去引导他的思维,将新知识与旧知识相联系,以系统的方式将它们组织起来,理解掌握所学的知识,并以此为出发点构建自己的知识体系,养成良好的记笔记习惯,是培养学生构建知识地图技能的重要实践活动。

笔记是构建知识的索引系统。构建知识体系最为重要的一环,是对所学知识抽取出一个骨架性的知识结构,以此作为学习或复习的导向系统。构建知识体系另一个层面的操作方法,是列出某一方面内容的主要概念、规律、实验、人物或年代等重要知识线索,将内容变为这种概要性的知识点,会使有关知识、规律的掌握变得更为容易。

笔记可以作为一个检索系统起作用,帮助学生组织一门课程中的浩如烟海内容,使其变得更容易记忆。而且,每门课程的各部分知识都具有内在的相互联系,结构化的索引系统可以帮助人们很容易从一种知识找到与其相关的知识。所以说,记笔记的过程,就是这种抽取、构建知识体系的'实际操作过程的反映。

二、怎么样做数学笔记?

救然学习数学做好课堂笔记至关重要,那么如何做数学笔记呢?

(一)、记提纲

老师讲课大多有提纲,并且讲课时老师会将备课提纲书写在黑板上,这些提纲反映了授课内容的重点、难点,并且有条理性,因而比较重要,故应记在笔记本上。

(二)、记问题

揩课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。

(三)、记疑点

对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。

(四)、记方法

勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。

(五)、记总结

注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。

总之,数学笔记该记,但是并不是把老师讲的全部记下来,要有筛选的记,把一些自己认为重点的,比较难的或者一时间想不通的记下来,以后有空再翻出来看看,加深印象。当然要取得好的成绩,光是记还不够的,记住,记完,要看啊,还要勤奋才行。

你也可以在搜索更多本站小编为你整理的其他高一数学学习心得多篇范文。

《高一数学学习心得多篇(全文共14561字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式